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The structure and dynamics of waves in a vapor-- liquid medium are investigated on the 
basis of a model equation for wave propagation in a liquid containing vapor bubbles. The 
results of the calculations are compared with the experimental pressure profiles. 

i. A two-temperature model has been proposed [i] for the propagation of disturbances 
in a liquid existing near the saturation line and containing vapor bubbles. On the assump- 
tion that the thermodynamic equilibrium condition at the bubble--liquid interface is pre- 
served in wave transmission, an equation has been derived in [i], describing the one-way 
propagation of a pressure wave: 
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where co = (Ypo/po o) z/~ i s  t h e  sound v e l o c i t y  i n  t h e  v a p o r - - l i q u i d  medium; 6 = R 2 o / 6 ~ o ( 1 -  
~o) ,  d i s p e r s i o n  p a r a m e t e r  o f  t h e  medium; ; 2 ,  d e n s i t y  o f  t h e  v a p o r ;  L, l a t e n t  h e a t  o f  v a p o r i -  
z a t i o n ;  qL, h e a t  f l u x  f rom t h e  b u b b l e  i n t o  the  l i q u i d ;  a ,  n o n l i n e a r i t y  p a r a m e t e r  i n  t h e  wave.  

I t  h a s  been  assumed i n  t h e  d e r i v a t i o n  o f  Eq. ( 1 . 1 )  t h a t  t h e  h e a t  f l u x  q v i n t o  t h e  b u b b l e  
i s  much s m a l l e r  t h a n  qL. T h i s  a s s u m p t i o n  i s  a l l o w a b l e  f o r  ~2 << ~, and ~ 1  > 1, where  ~1, 
~2 are the thermal conductivities of the liquid and the vapor and az, a2 are the thermal dif- 
fusivities of the liquid and the vapor. 

The heat flux qL in the model of [i] is written in the Duhamel integral form [2] 

~i (r - -  rs) ~ 0 i 

0 

(1.2) 

The approximation (1.2) postulates not only weak mobility of the bubble boundary, but 
also the fact that the thermal wavelength ~T = 2~/~ is much smaller than the distance be- 
tween the bubbles. When IT is of the order of the acoustic wavelength la, many bubbles fit 
within the wavelength, and the model of [i] does not work. This situation corresponds to the 
problem of the sound velocity in the vapor-- liquid medium considered in [3] and the wave- 
propagation model formulated in [4]. In this sense the proposed model of [i] is a high-fre- 
quency model. 

Assuming that the wave amplitude is small and the compressibility of the vapor can be 
neglected, we can relate the temperature perturbation AT to the pressure perturbation ac- 
cording to the Clauslus--Clapeyron equation and rewrite the heat flux (1.2) in terms of 
the pressure perturbation: 

) o,%,,,,.,o(A,, !' d. 
q , . =  + �9 

Then after certain estimates and simplifications [i] Eq. (i.i) acquires the form 
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E q u a t i o n  ( 1 . 3 )  i s  g e n e r a l i z e d  t o  t h e  c a s e  i n v o l v i n g  d i s s i p a t i o n  due  t o  t h e  a c o u s t i c  
r a d i a t i o n  v i s c o s i t y  by  a n a l o g y  w i t h  [ 5 ] .  The l e f t - h a n d  s i d e  o f  Eq. ( 1 . 4 )  a c q u i r e s  a t e r m  
of the form q 3 2 p / 3 x  2,  where ~ is the effective dissipation coefficient. 

With the introduction of the dimensionless variables 

u. = ( (7  -',- l),27)coAp'po," ' Uo=((? v-' l ) / 2 ~ , ) % A p o / p o  , I = Uot o, l~- = u / u  o, r = f / to ,  ~ ~ = x / l  

(to is a characteristic time) Eq. (1.3) acquires the form 

~ ~ d2~ l o~ 0"-% Vr6~_ ~ ~ (1.4) + + _ o ~  [ 

- + 0 

where 

Re = uol/~l; ~2 = FUo/~Co; Pe = uol/al; 
2 2 2 . M = Uo/Co; c~ = L pJT,oPlcv,  

c2 c o i n c i d e s  f o r m a l l y  w i t h  t h e  e x p r e s s i o n  f o r  t h e  s o u n d  v e l o c i t y  i n  t h e  v a p o r - - l i q u i d  m i x -  
t u r e  i n  [ 3 ] .  

F o r  w a t e r  c o n t a i n i n g  v a p o r  b u b b l e s  a t  one  a t m o s p h e r e  Pe '~ 10 s ,  so  t h a t  t h e  t e r m  p r o p o r -  
~ 

tional to u can be neglected. The transition to the variables ~ = ~a and ~ = ~ completes 
the solution of the problem of the principal criteria governing the wave process in the 
liquid containing vapor bubbles: 

0 

o (1.5) 

~?+i V '  3 j a / ~ e M  3 W = ~ ~a% 

w h e r e  J a  = CpAT~I/Lp2 i s  t h e  J a k o b  n u m b e r .  

As W § 0 t h e  p r o p a g a t i o n  o f  w a v e s  i n  t h e  l i q u i d  c o n t a i n i n g  b u b b l e s  i s  d e t e r m i n e d ,  a s  i n  
gas--liquid systems, by the values of ~ and Re, and the involvement of phase transitions in 
the wave is characterized by the criterion W. The latter varies as a function of the initial 
pressure Po and the physical parameters of the wave: Pe. 

2. Equations (1.4) and (1.5) are the Burgers--Korteweg--de Vries (BKdV) relaxation equa- 
tions. The right-hand sides of these equations contain a relaxation integral. Unlike the 
BKdV relaxation equation derived in [6] for the modeling of waves in a liquid containing gas 
bubbles with heat transfer, the integral has a "square root" kernel, rather than an exponen- 
tial kernel as in the case of [6]. With an exponential kernel it is possible to determine 
explicitly the characteristic relaxation time ~o and, by differentiating, to eliminate the 
integral, arriving at a higher-order equation. The "square root" kernel corresponds to an 
infinite relaxation time and does not permit the transition to a higher-order differential 
equation without an integral. 

The propagation of waves in a liquid containing vapor bubbles is modeled on the basis 
of Eqs. (1.4) and (1.5) with the application of numerical integration to the experiments of 
[7]. Equation (1.4) is integrated numerically for Re § ~ according to an as}~nmetric differ- 
ence scheme [8]: 

~n ~ ~n ~ 2AT [~n 3~n 
--- - -  v-i ) - - e l i + i  5 

where e is the coefficient in front of the integral in Eq. (1.4) and I n i+~.5 is an approxi- 
mation of the integral, written in the following form for the net-point (computing grid) 
representation of the function ~(r, ~) 
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where q = T / A T .  

In Eq. (2.1) A~ and AT are related by the stability condition AT ~A~302/8 and the 
approximation condition 1.5A~/AT = M -t, 

The scheme (2.1) is implemented as a r-explicit scheme, making it possible to compute 
the values of the function u(~, ~) directly on a four-word array with respect to ~. 

The numerical solutions of Eq. (1.5) are found by an analogous procedure. The opera- 
tion of the scheme is verified in three stages. In the first stage we set r = 0, whereupon 
Eq. (1.5) goes over to the Korteweg--de Vries equation, which has well-known numerical solu- 
tions [9]. In the second stage, to verify expression (2,2) we compare the numerical solution 
of the problem 

t 

du Ou ~ OulO'r __IO for t = O, 
ot + M-1 = ] -- ~ --e - - & ,  u(t,O) 

l / t  ~; - - [ 1  for t >  0 

with its analytical solution 

u ( t , x )  ---- e r r c  ! ~__ �9 
t 2 ] / t  - - M z  ] 

In addition, we compare the numerical solution of the linearized equation (1.5) with the 
solution obtained by the fast Fourier transform method from the derived dispersion relation 
[8]. In every case the error does not exceed 2%. 
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The values of the coefficients of Eq. (1.5) are calculated from the initial conditions 
of the experiments [7, 9], and the equations are solved at distances X~ corresponding to the 

coordinates of the sensors. 

3. The results of the calculations are compared with the experimental pressure profiles. 

Figure 1 shows the results of calculations of a disturbance of the "shock wave" type; here 
and in the other figures the dashed curves represent the experimental results (~ -~ ~, W = 
62' 10 -4 , M = 0.67). 

Figure 2 shows the results of the calculations for the structure of a wave of finite 
extent and compares them with the experimental results (~ = 26.5, W = 0.67, M = 0~ 

The results of the calculations are conveniently represented in the form of a graphical 
tableau, the coordinates of which are the characteristic parameters W, o of the wave process 
in a liquid containing vapor bubbles (Fig. 3); this graphical representation is similar to 
[7]. 

The numerical modeling of Eqs. (1.4) and (1.5) and the comparison of the results of the 
calculations with the experimental data show that the propagation of low-intensity waves in 
a liquid containing vapor bubbles is adequately described by the Burgers--Korteweg--de Vries 
equation with a "square root" kernel. 
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